SOLUTION OF LINEAR BOUNDARY INVERSE
PROBLEMS OF HEAT CONDUCTION

I. A, Novikov UDC 536.24.,02

New methods of solving linear one-dimensional boundary inverse problems of heat conduction
are proposed; the methods are convenient for practical realization,

§1. The solution of linear boundary inverse problems of heat conduction (IPHC) by various methods has
been considered in a number of works (for example, [1, 6-8, 11-16]). However, the direct methods of solu-
tion [7, 8, 11-13} are limited by the large time step of the approximation and regularized methods [14-16]
usually demand a computer with a large memory. The present work pursues an intermediate path, attempt-
ing to increase the stability of the IPHC solution while retaining the simplicity of the direct methods of solu-
tion, Many linear one-dimensional boundary IHPC reduce to an integral Volterra equation of the first kind of
convolution type
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where u(t) and K(t) are known functions and zy(t) is unknown. This improper problem is solved using an inte-
gral equation with a numerical parameter by means of which in {1] the temperature-field time lag was taken in-
to account. The introduction of the numerical parameter o, chosen appropriately, increases the stability of the
IPHC solution, as is confirmed by the numerical calculations below,

, The procedure for reducing an integral Volterra equation of the first kind to an equation of the second
kind is applied to Eq. (2), giving the result

t
u(t) = [ K(t—v+ )25 (1), 60, @
[}

by means of which in [1] the temperature-field time lag was taken into account. The introduction of the numeri-
cal parameter @, chosen appropriately, increases the stability of the IPHC solution, as is confirmed by the
numerical calculations below,

The procedure for reducing an integral Volterra equation of the first kind to an equation of the second
kind is applied to Eq. (2), giving the result
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The problem of solving this equation for K(®) # 0 is proper. Introducing the function Zy(t) = zy(t)K(®) reduces
Eq. (3) fo an integral Volterra equation of the second kind in the usual form
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Usually in heat-conduction problems K(@) = 0 when o > 0, u(0) = 0, and the functions u(t) and K(t) have con-
tinuous derivatives. Then Eq. (3a) has a continuous solution zq(t) when @ > 0, I u(t) has no continuous deriva-
tive, it is possible to use the method of treating the input data outlined in [3], which ensures a uniform approxi-
mation to the function u(t) itself and its derivative. The well-known methods [4] may be used for the numeri-~
cal solution of Eq. (3): iteration, least squares, quadrature formulas, collocation, Laplace transforms, etc,
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The numerical parameter « such that zy is a good approximation to the accurate solution z; is chosen
according to the diacrepancy principle [5]
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where tj is any uniform division of the points on the interval [0, tmax] and d, is the mean-square error of the
input data. If §; is unknown, the quasioptimum-parameter method [5] may be recommended for the choice of
zg (). Some large number a* is chosen and a sequence of numbers a7 =a* (0 < g<1;1=0, 1, 2,...)1s8
constructed. The value ogo of @ is found from the condition
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or from the condition of a minimum of the maximum deviation
mlin mlax 20y (85} — 2a_, ()] (5b)

§2, Direct solution of Eq.(2) is preferable, since the sufficient condition for its solution is that u(t) be
constant. In engineering practice, the solution of Eq. (1) is often found by a method involving the approxima-
tion of z; by a discontinuous step function. In this case Eq. (1) reduces to the solution of a system of linear
algebraic equations with a lower triangular matrix, the elements of which are diagonally equal [6]
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Here H = tyax/N, tx = kH, and N is the number of intervals. The algebraic system in Eq. (6) may be solved

using ﬁhe inverse matrix B¥* = {bfd} of Eq. (6), which is also a lower triangular matrix with diagonally equal
elements
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Formulas for the solution of various specific IPHC by this method are given in [6-8]. The main deficiency of
this method of solving Eq. (1) is the large value of the critical step H (or AFo) at which the matrix d¥ becomes
poorly specified {6]. A method of calculating linear IPHC better than that outlined above will now be suggested.
The basis of the method is to solve Eq. (2) with the numerical parameter @, approximating the solution zy by a
discontinuous step function. Set
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Approximation of Eq. (2) using Eq. (8) leads to a system of linear equations differing only in the matrix ele-
ments from the system in Eq. (6). Therefore, Eq. (2) may be solved using Eq. (7) for the inverse matrix B =
{oKs} = D!, replacing the matrix elements df( by dy;. Accordingly, various specific IPHC may be calculated
by this method using the formulas in [6-8], making appropriate changes in the equations; for example, in all
the formulas for the matrix elements d’{n given in Table 1 of [6], the replacement of (n — p) by (n — p + a/AFo)
is sufficient to give the matrix elements dj, for Eq. (2).

A series of calculations is made by the proposed method, in accordance with the quasioptimal-param-
eter method. In most cases, o* may be taken to be gy, the value of o at which the kernel K(¢) has a maxi-
mum. For each number ¢ (I =0, 1, ...) the above method gives a solution za(t) of Eq. (2) and a quasioptimal
value aqo is chosen from Eq. (5a) or (5b). Thus, for the approximate solution of Eq. (1), Eq. (2) must be solved
several times with different values o] of the parameter a.
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Fig. 1. Conditionality number
v for different methods of solv-
ing Eq. (9);1, 2) the dependence
v(®) for the matrix of Eq. (8)
with N = 20, AFo; = 0,1, and
AFo, = 0,05; 3) the dependence
Y(AFo) for the matrix of Eq. (6)
with N = 20; 4) the dependence
v(a) for the matrix of Eq. (8)
with N =20, Fo = 0,05; 5) the de~
pendence y(a) for the matrix of
Egs, (11) with AFo =0,1, N =
10,m=r=1,p=0.

It may be expected that in the solution of Eq. (2) the permissible step H (or AFo) will be considerably re-
duced as a result of the regularizing effect of the numerical parameter o. To demonstrate this, consider the
problem of heat-flux recovery at the boundary of a semiinfinite rod. In this case Eq, (2) takes the form

Fo
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The matrix elements dy; are of the form
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As in [6], the error in solving the algebraic system in Eq. (6) with the matrix D is estimated using the condi~
tionality number ¥ =lIDI - I Bll, which maximizes the spectral conditionality number of the matrix (6, 9, 10].
For N = 20, curve 3 in Fig. 1 shows the dependence of y on the step AFo for Eq. (1), corresponding to the case
a=0in Eq. (2). Curves 1 and 2 of Fig. 1 show the dependence of ¥ on o for the steps AFo; = 0.1 and AFog, =
0.05, respectively, 5 and 10 times less than A¥o.p = 0.5 for a = 0 [6]. Comparison of curves 1-3 shows in
that Eq. (9) may be solved using the steps AFoy and AFo,, Curve 4 in Fig. 1 shows the increase in the condi-
tionality number y with decrease in the approximation stepby half, the total interval of variation of Fo being
unchanged.

§3. The subject of this section is a method of solving Eq. (2) which is able to generate the function ze(t)

with the first p continuous derivatives over the whole of the interval t€ [0, t;nax]. The function zy(t) is written
in the form of a set of m-th order polynomials
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In Eq. (10a) k gives the number of the interval t€[tk_;, tk]. On the left-hand ends tgx_y (k=2,... ,N) of
the intervals [tk-4, tk] the polynomials z&kl(t) are joined either according to continuity (p = 0) or continuously
with the firstp (p=1, 2,... , m —p) derivatives.
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Fig. 2, Dependence of heat-
flux recovery q(Fo), kW/m?,
for different methods of solu-
tion of the problem: 1) tem-
perature T (Fo), °C, measured
a distance x; = 1.8- 10~ m
from the end of the rod; 2)
points given by the formula of
[8] for AFo = 0.452; 3) results
of Eqgs. (7) and (8) for AFo =
0.1; 4) continuous curve of q(¥o)
plotted for N=2, r=2, m =3,
p = 0;5) accurate solution of
the problem.

To determine the coefficients z[k] the collocation method was applied to Eq. (2). On each interval [ty_,,
tk] the number of collocation points is m — p. The j-th collocation point (j =1, 2,..., m — p) on the k-th in-
terval will be denoted by tlkl = tk-1 +jhs h = H/(m — p). Taking into account the junction condition the functions
z[k](t) and their derivatives up to and including the p-th order at the points ty_y (k =2, 3, ... ., N), a linear
system of algebraic equations of N(m +1)-th order is obtained for the calculation of the coefficients z[ls‘]. Its
matrix has a cellular diagonal structure formed by cells of (m + 1)-th order

D z[l]:Un]
® 1Y ’ (11)
D, 2" U™, =23, ..., N
{=1
Here
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- —D(n— = R 1,
= =N As—Nn—3s), n=1, 2, P+ (11b)
bil,n=p+i+ii=12 ..., m—p,
[0,n=l, 2,...,p+1
Ul n=p 4 =12 ..., m—p,

2L k—I<N~—1,
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where 0,4 is the Kronecker delta, while
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I<E—I<N—1.

On the first interval there is no junction condition. Ifr (1 =r =m + 1) collocation points t[f1= jhy arechosen,
where hy = H/r, then J
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For the practical calculation of the coefficients zIKl it is expedient to represent the system of N(m + 1)-th
order as a set of N algebraic systems of (m + 1)-th order, differing only in the right-hand sides

1 (1
Dzt =yt (12a)
E—1
Dz™ =u™M _¥p, z" k=23 ..., N (12b)
=1
The solution of Eq. (12) is given by the formulas
Z[ll _ DT]IU“], :
&—1 (13a)
2™ = p7'ut — ¥ Dg'D, 2, k=2,3, ..., N. (13h)
{=1

Numerical calculations by this method may be made on a computer with a small memory. Settingp = 0
and m = 1 reduces Eqs. (12b) to a particularly simple form,

It is of interest to analyze the dependence of the conditionality number y on the parameter « in the problem
of heat-flux recovery in a semiinfinite rod. Curve 5 in Fig. 1 corresponds to the presence of a single colloca-~
tion point on each interval; in this case the solution zu(t) of Eq. (9) is approximated by a constant, piecewise
linear function. It is evident from a comparison of curves 1 and 5, constructed for the same order of the
matrix and the same step AFo of the approximation, that the number of the system increases on passing from
a discontinuous to a continuous approximating function.

Results given for the calculation of Eq. (9) by different methods for a specific dependence of the tempera-
ture T on the Fourier number (A = 1,085-107% W/m - deg) are shown in Fig. 2. The numerical parameter o was
chosen from Eq. (5a) for curve 3 and from Eq. (5b) for curve 4. These curves are in sufficiently good agree-
ment with the accurate solution over the interval of variation of Fo, except in the region of very small Fo (Fo <
aqo), which indicates good accuracy of the heat-flux recovery. The practical realization of the proposed



methods of solution of linear boundary IPHC is fairly simple. In the considered example, finding a continuous
solution (p = 0) of Eq.(9) using Eqs.(11)-(13) involves, in practice, the solution of two third-order algebraic

systems.
NOTATION
A is the thermal conductivity;
X4 is the coordinate of fixed thermal pickup;
AFo is the Fourier-number increment;
fl-1 is the Euclidian norm of matrix.
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